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The effect of stress on the helix-coil transition in a protein or polypeptide is investigated 
using the methods of statistical mechanics. A case is treated in which the helical sections 
are regarded as flexible chains with very long, freely "orienting" segments and another 
in which they are considered to be rigid rods. Thermoelastic relations are derived; 
and it turns out that, depending upon conditions, stress can induce the helix-coil 
transition in one or another direction or do nothing at all. The most probable situations 
either involve stress applied to a molecule initially helical, in which case the helix is 
stabilized, or stress applied to the coil form, in which case transformation to the helical 
form is induced. The helical form exhibits a very low modulus of elasticity (which we 
also compute), and it is speculated that preservation of, or transition to, the helical 
form under stress aids in the protection of living tissue from disruption when subjected 
to large applied strain. Real tissues involve highly organized or quasirandom networks 
of protein chains. The results of this analysis suggest that, insofar as the mechanical 
properties of the networks are concerned, the chains can be treated as quasiharmonic 
strings whose configurations (weighted by potential energy) can be enumerated in 
order to include entropy effects in the calculation of the network modulus. 

KEY WORDS:  Protein; helix-coil transition; thermoelastic properties; statistical 
mechanics. 

I .  I N T R O D U C T I O N  

The  m e c h a n i c a l  p rope r t i e s  o f  l iv ing t issue are  r o o t e d  in the  b i o p o l y m e r i c  molecu le s  

o f  wh ich  they  a re  c o m p o s e d .  These  molecu le s  are  themse lves  a s sembled  in to  super-  

s t ructures ,  the  f o r m s  o f  wh ich  m a y  v a r y  all the  way  f r o m  h igh ly  o rgan ized  assembl ies  

such as are  f o u n d  in s t r ia ted  musc le  ~1) to q u a s i r a n d o m  n e t w o r k s  typif ied by  f ibr in 

clots,  c2) In  connec t i ve  t issue such as co l lagen ,  c ross - l ink ing  m a y  be  a u g m e n t e d  by 

c rys ta l l i za t ion  and  o the r  nonbond- spec i f i c  processes .  

I n  1956, F l o r y  (8~ cons ide red  elast ic m e c h a n i s m s  in f ibrous  p ro t e in  ne tworks ,  
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employing a quasithermodynamic approach. Although the features of the network 
itself exert a profound influence on the mechanical properties of tissue, characteriza- 
tion of these properties should begin with an examination of the mechanical behavior 
of the individual chains. For example, when these consist of proteins capable of 
adopting the ~-helical form, we might ask whether the application of stress is able 
to induce transitions between helix and coil, or vice versa. If  this is possible, the 
mechanical properties of the network should be very unusual. As we show later, 
there is a strong possibility that the application of stress induces the transition, 
coil-to-helix, and, for molecules initially in the helical state, merely further stabilizes 
that condition. 

It is not unusual to discover that nature has adapted certain life processes to 
serve more than one purpose. The helix-coil transition may fall into this category. 
It may be fundamental, for example, to certain kinds of enzyme activity. At the same 
time, if stress tends to stabilize the helical form (or to induce it in molecules initially 
coiled), the transition may represent one of nature's methods for protecting tissues 
from the application of large, disruptive stress. This follows, in a qualitative way, 
from the following considerations. The helix is a fairly rigid structure which, in the 
final analysis, cannot be thought of (strictly) as having rubber or gaslike elasticity. 
On the other hand, if we regard the matter loosely and consider it to behave approxi- 
mately in this manner, the effective length (4~ of the freely orienting segment will 
have to be quite large. For gaslike elasticity, this implies a low elastic modulus 
(since the relative numbers of configurations and hence the relative entropy are 
not so great in the contracted state) so that appreciable stress can only be supported, 
under equilibrium conditions, when the strain is large. In contrast, the coiled form of 
the protein will have a small, freely orienting segment and a large elastic modulus. 
Application of stress to the coil therefore causes transition to the helical form; 
the natural direction for the process since it leads to a reduction in elastic modulus 
and relief of stress. It is therefore difficult to apply large stress to the protein in 
either the coil or helical state. 

The above argument may apply to globular as well as fibrous proteins. The 
helical form, and the possibility of coil-to-helix transformation, may represent a 
safety feature protecting globular molecules in fluid biological environments such as 
plasma. The extreme malleability of erythrocytes, enabling them to slip through 
tiny blood vessels and capillaries smaller than the cell itself, may be facilitated by 
this low-modulus mechanism. 

These conclusions, elaborated below in a more quantitative manner, indicate 
that the elastic, or quasielastic, behavior of an individual globular protein molecule, 
or of a polypeptide chain in a network, might be modeled as a quasilinear elastic 
string (harmonic from the point of view of the dependence of potential energy on 
local curvature) in which entropic effects can still be evaluated through an enumeration 
of configurations properly weighted by potential energy. Such a model would of 
course have its value confined to the description of thermoelastic behavior. We shall 
defer the examination of this question to a later investigation. In the present paper, 
considerations will be limited to the investigation of stress on the helix-coil transition 
in individual protein or polypeptide chains. 
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2. C H O I C E  O F  M O D E L  

In order to make contact with earlier work on the helix-coil transition in 
unstressed systems, we shall attempt to model the protein molecule, as much as 
possible, on the Zimm-Bragg scheme. <5) The Zimm-Bragg model has in fact been 
developed for polypeptide rather than protein molecules, and we shall assume also 
that the protein can be approximated by a polypeptide. This amounts to replacing 
the actual distinct amino acids in the chain by an "average" amino acid; the exact 
effect of the improper order of averaging not being entirely clear. One effect demon- 
strated with certainty, <6~ however, is a narrowing of the range over which the helix-coil 
transition takes place. The "average" polypeptide is more like a crystal and has a 
"sharp" melting point, whereas the true protein may be likened to a disordered 
amorphous solid and possesses a softening "range." 

In the a-helix, hydrogen bonding generally occurs between carbonyl and amino 
groups situated respectively on amino acid units which are third nearest neighbors. 
For  the purpose of this article, we assume that onlyfirst nearest neighbors are involved, 
a simplification which is known (5~ not to influence the form of the conclusions--in 
view of the considerable averaging already involved in the model. At the moment, 
we are primarily involved with form. 

The free energy of a hydrogen-bonded helical segment may be denoted by FH, 
while if the bond is dissociated, it becomes F0 �9 The contributions, as factors in the 
molecular partition function of bonded and nonbonded segments, are then 

e -Fa/~r, e -F~ (1) 

respectively. Here, k is the Boltzmann constant and T is temperature. Zimm and 
Bragg select the nonbonded state as standard (choosing the zero of energy appro- 
priately) and set F0 = 0. Then, 

FH : A F  (2) 

where AF is the free energy of hydrogen bonding. Since it is a free energy, AF is itself 
temperature-dependent. We write 

e -FrI/~r = e -~F/kr = s (3) 

e-~o/~r= 1 (4) 

using therefore the same notation as Zimm and Bragg. 
Every uninterrupted sequence of helical segments has two ends which interface 

with sequences of nonhydrogen-bonded segments (coil sequences). The free energy 
associated with these two interfaces may be denoted by W, and the contribution to 
the partition function is then 

= e-Y'/~T (5) 

where a is a quantity which Zimm and Bragg have called the "nucleation parameter." 
Several different interpretations have been given to W and or. In the simplest 
approach, ~5) W is assumed to include both the stacking energy (associated with the 
difference between having a bonded and nonbonded segment and two bonded 
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segments in sequence) and the entropy associated with the multiplicity of configura- 
tions which the coil sequence may possess. In some treatments, (7) however, ~ is 
limited to the stacking energy and the coil entropy is evaluated separately. In the 
present paper, we adopt the latter approach. 

Since we are interested primarily in the form of the phenomena, it is convenient 
to reduce the mathematical complexity to the point where simple analytic expressions 
can indeed be obtained and the forms in question are directly visible. Therefore, 
we will limit both coil and helical configurations (the latter now being regarded 
as somewhat flexible) to those corresponding to o n e - d i m e n s i o n a l  random flights. 
This is by no means an essential restriction, and it can be removed without incurring 
insuperable difficulties. On the other hand, the formulas involved become considerably 
more unwieldly. In the helix, we shall denote the effective length of the freely orienting 
segment by 7', while in the coil it will be denoted by A. Further, we shall assume that 
7' corresponds to m amino acid (hydrogen-bonded) units and that A involves n such 
units. A certain necessary loss of precision accompanies this procedure in that 
(a) m and n are chosen to be integers, (b) m and n may not be commensurate, 
(c) fractional segments involving numbers of amino acid units less than m or n will 
have to be identified as full segments. If, for example, the number of dissociated 
hydrogen bonds in a coil sequence is less than n, the coil is assumed to have o n e  

random flight segment. If the number of dissociated bonds lies between n and 2n, 
the coil has two segments, and so on. 

In the one-dimensional random flight model, the end-to-end distance of a coil, 
denoted by l, is an integral number (positive or negative) of lengths A. Suppose 
the coil contains v random flight segments, or 

x = nv (6) 

amino acid units. Then, the number of random flight configurations consistent with 
given v and l is 

v! 
q~,~ = qz,~ = [�89 + l)]! [�89 -- l)]! (7) 

where 1 is even if v is even, odd if v is odd, and can vary between §  and --v. A simple 
notation results from defining 

Then, 

where now 

r = ( v - - l ) ~ 2  or l =  v - -  2r (8) 

q~,~ = q~, ,  = v ! / ( v  - -  r ) !  r !  (9) 

r = 0, 1, 2 ..... v (10) 

The quantity qz,v is the factor that the coil sequence (1, v) contributes to the partition 
function of the molecule. Because of the lack of precision associated with the need 
to deal with fractional random flight segments, q~y will have to go with coils having 
end-to-end distances l, but with 

(v - -  1) n < x  < . v n  (11) 
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The contribution to the partition function of a helical sequence can be derived 
in a similar fashion. Suppose there are /z random flight segments in the helical 
sequence. Then, the helix will consist of 

h = m/z (12) 

amino acid (hydrogen-bonded) units. The configurational part of the contribution 
to the partition function will be similar to the corresponding quantity for the coil 
exhibited in Eq. (9). Thus, we will have 

, /z~ _ /z! 
q~'~ = [�89 + t)]! [�89 -- t)]! (tz -- r)! r! (13) 

where t is the end-to-end distance for the helix (in units of y), the counterpart of 1 
for the coil, and 

r = 0, 1, 2,...,/~ (14) 

However, the helix partition function also has contributions from the stacking 
interracial energy T, and the free energy of bonding. As in the original Zimm-Bragg 
model, this contribution may be represented as 

qh' = ~rs ~ (15) 

The total contribution of a helical sequence is then the product of the quantities 
appearing in Eqs. (13) and (15), namely 

qt.h = [/z!/(/~ -- r)! r!] ~s ~ (16) 

If  in a given total configuration of the molecule there are n,.h helices of length t 
containing h amino acid units and nz,~ coils of length l containing x units, the term 
contributed to the partition function by this configuration is 

I~ (q,.~)""~ I-I (q~.~)"~'~ (17) 

The partition function in the canonical ensemble is obtained by summing Eq. (17) 
over all sets nt.h, n~,~ consistent with the requirement (conservation of the N of 
amino acid units in the molecule), 

Z + Z = U (18) 
t ,h  l , x  

including permutation of helices among helices and coils among coils. Thus, for 
the partition function in the canonical ensemble, we obtain 

Q -- ~ I-[ (q~,n) "''~ ]-[ (qz,~) "''" (19) 
n t ,h  1,x 

where the formal vector n is meant to indicate the allowable sets of n's, including 
the above-mentioned permutations. 
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3. T H E  C O N S T A N T - F O R C E  ENSEMBLE 

Since we are interested in the thermoelastic properties of the molecule, the 
most convenient path does not involve the use of the canonical ensemble and the 
partition function Q appearing in Eq. (19). It is more convenient to work in the 
constant-force ensemble, (s) where the relevant partition function is 

A = ~ eSt/kTQ(L, T) (20) 
L 

where f is the tensile force to which the molecule is subjected, L is the end-to-end 
distance of the molecule, and Q(L, T) is the canonical ensemble partition function 
at fixed length L and temperature T. It is easy to show (8) that 

G = A - - f L  = - - k T l n  A (21) 

where G is the analog of a Gibbs free energy and A is the Helmholtz free energy of 
a molecule. It may also be shown (s) that 

(L)  = kT{8(ln A)/8f}r (22) 

where (L} represents the average end-to-end distance of the molecule at constant 
temperature T and forcef. In the constant-force ensemble, L is permitted to fluctuate, 
but for a large enough molecule the fluctuation will be negligible, and L will have 
an essentially constant observed value (at given f and T) prescribed by (L}. Equa- 
tion (22) is the desired elastic equation of state. 

It is necessary, however, to evaluate A, and for this purpose the form appearing 
in Eq. (20) is inconvenient since it requires the evaluation of Q(L, T), the canonical 
ensemble partition function at L, and this is the very problem we wish to avoid 
in working with A rather than Q. 

The various terms in the sum in Eq. (19) correspond to different values of L. 
The partition function Q in Eq. (19) corresponds to the zero-stress case. The value of L, 
corresponding to a given term in the sum in Eq. (19), is given by 

L = y Z tnt.~ § A Z ln~,~ (23) 
t ,~ ~,r 

so that Eq. (20) can be rewritten in the form 

~Z t ~/~ n |TZ A = Z 1-[ zt,n z~,~ (24) 
n t , ~  

where again the formal vector n implies all sets of n's consistent with Eq. (18), 
including permutations of helices among helices and coils among coils, i.e., over 
all allowable configurations. In Eq. (24), 

zt,~ = (dal~T)tq~.o~ = u~qt,x 
(25) 
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By counting the allowable permutations of helices among helices and coils among 
coils (the number of permutations going with a given set of n's), Eq. (24) can be 
further rearranged to read 

in which we have used the symbol 

nt,h! ~,z n~,~! 
(26) 

According to Eq. (21), 
corresponds to the largest root of Eq. (31). Thus, for the stable solution, we require 
the larger of the two roots. This is 

V § s U  _[_ V - - s U . )  ~ asVU] z/~ 
Y--  2 [ ( 2  + (34) 

(32) 

U =  ( u - k  l )  "/~'~ (33) 

combined with (30), the lowest free-energy solution 

M = Z nt,h = Z n~,~ (27) 
t,h l,w 

the number of coils equalling the number of helices except for negligible end effects. 
Since we are interested in the logarithm of A, we can represent it by the logarithm 
of the largest term in Eq. (26). Introducing Stirling's approximation for the factorials, 
and taking the variation with respect to the n's subject to the constraints Eqs. (18) 
and (27), we obtain for the set of n's going with the maximum term 

M a M~__(s]  h I ~[ 
n~,~ = -~  y -  z~a~ = a ~ Y / (F _ r)i r! u " - ~  (28) 

v! 
n~,= = May-=z~,= = M a y  .= (v - -  r)[ r! v"-2r (29) 

where c~ and y are undetermined multipliers whose values are fixed by Eqs. (18) and 
(27). Substitution of Eqs. (28) and (29) into the typical term of Eq. (26) yields 

In A = Nln y (30) 

[since Eqs. (28) and (29) refer to the maximum term], so that determination of A 
is reduced to the determination of y. To accomplish this, we substitute Eqs. (28) and 
(29) into (27) and perform the indicated sums, which involve only geometric series. 
After summing, the quantity ~ can be eliminated between the two equations contained 
in Eq. (27), with the result 

y~ --  {V  + s S }  y + s(1 -- (r) VU = 0 (31) 

where 
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Previous studies (5) show that, for most proteins, cr is a small number, of order 
10-4-10 -6 . Under these circumstances, the protein undergoes transition from coil 
to helix, or vice versa, abruptly over a range of s U  or V of order cr This is reflected 
in an abrupt change in the value of y [given by Eq. (34)] in this range. To determine 
the respective conditions under which coil and helix exist, we proceed as follows. 
We note that 

( ~ln A ] 1 [~  ( ~  hn~,~) l l  ~"~,~z"~,~] = ( ~  hn t h) = m n  (35) 
�9 , t , h  

where mn is the average number of hydrogen-bonded amino acids in the molecule. 
When s U  is large compared to V, Eq. (34) gives 

y = sU (36) 

When V is large in comparison to sU, Eq. (34) requires 

y = V (37) 

Substitution of Eqs. (36) and (37) alternatively into (30), and the results then substi- 
tuted in Eq. (35), yields 

mH = N (38) 

for y having the value given by Eq. (36), and 

ms = 0 (39) 

when y is given by Eq. (37). The result in Eq. (38) indicates that the molecule is 
composed entirely of helix (all amino acids are hydrogen-bonded), while, in the case 
of Eq. (39), the molecule is all coil. Thus, when s U  exceeds V, the molecule is helical; 
while, if the reverse is true, it is composed entirely of coil. For small values of ~, 
the transition takes place approximately when 

s u  = v (40) 

4. T H E R H O E L A S T I C  R E L A T I O N S  

Although the parameter cr is small in most real systems, it is instructive to begin 
our examination of the thermoelastic relations which obtain in a protein molecule 
by considering the special case in which the helix-coil transition is noncooperative. 
This is the case in which a = 1 or AF = O. (AF, it will be recalled, represents the 
free energy of bonding.) For this case, Eq. (34) gives 

y = s U  + V (41) 

Substituting this result into Eq. (35) and making use of Eqs. (32) and (33) yields for 0, 
the fraction of bonded or helical amino acids, the result 

0 = m__g_n = s[cosh(~,f/kT)] 1/~ (42) 
N s[cosh@f/kT)]l/~ @ [cosh(,~f/kT)]l/~ 
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I f f  is sufficiently large so that we may approximate the cosh terms in Eq. (42) by 
single exponemials, 0 becomes 

0 = [1 q- exp [(A/n) -- (y/m)]fq- AF] -z (43) 
k T  

where we have used the expression for s given in Eq. (3). We may consider Eq. (43) 
in four different cases. These correspond to: 

case a: AF < O, y/m > A/n 

case b: AF < O, y/m < A/n 

case c: AF > O, y/rn < A/n 

case d: AF > O, y/rn > A/n 

In case a, at low enough temperatures or for sufficiently large negative values of AF, 
0 is approximately unity, so that the molecule is in the helical form. Since the first 
term in the exponential is negative, the application of additional stress (increasing f )  
merely brings 0 closer to unity. Thus, in case a, stress stabilizes the helical form. 
In case b, the first term in the exponential is positive. As a result, for a sufficiently 
large value off ,  0 will undergo a fairly abrupt reduction to zero, so that the molecule 
makes the transition, helix to coil, with the application of stress. The transition will be 
abrupt because we have assumedflarge, and we are dealing with exponential behavior. 
Thus, even in the absence of cooperativity (e), the application of stress, in case b, 
can lead to a sharp transition if AF is a sufficiently large negative number. 

In case c, at low enough temperatures, 0 will approximate zero and the molecule 
will be in the coil form. Since in this case the first term in the exponent in Eq. (43) 
is positive, the application of stress merely stabilizes the coil further. In case d, 
however, since the first term in the exponent is now negative, the application of 
sufficiently large stress will cause an increase of 0 from zero to unity, so that a 
transition from coil to helix will have been induced. 

Notice that, if A/n = y/m, stress has no effect on the system [the first term in the 
exponent in Eq. (43) vanishes], and the usual formula for the noncooperative, 
unstressed case is obtained. 

In all cases, if we identify the transition by its midpoint, i.e., by 0 = 1/2, it occurs, 
according to Eq. (43), when 

[(A/n) -- (y /m)] f  = - -AF  (44) 

is satisfied. 
We have elected to consider the situation for values o f f  sufficiently large so 

that Eq. (43) holds. Since this equation has a simple form, it is especially easy to 
discern the interplay of various physical effects. On the other hand, it should be clear 
that the same qualitative features of the phenomenon are to be expected when f 
is small, so that Eq. (42) must be used, or even when rr is small, so that Eq. (35) 
requires an even more complicated expression for 0 than Eq. (42). 

The important question to be answered at this juncture pertains to the probable 
sign of the inequality between y/m and A/n in the case of most proteins. These 



78 H .  Reiss 

quantities represent the length per amino acid in helical and coil, freely orienting 
segments, respectively. For a perfectly rigid helix (a situation for which we have,  
not made allowance in our form of development), the symbol which would have 
to replace y/m would be fi, the length of an amino acid in the helix (see Appendix). 
Because of internal coiling in the freely orienting segment, it is probable that fi > A/n, 
and cases a and d would be involved. In these cases, as we have seen, the application 
of stress either stabilizes the helical form or induces it if the molecule is initially 
in the coil form. 

Actually, however, we may expect that the helix will be somewhat flexible. 
The value of y/m will still, however, exceed ,~/n, and so we may still expect cases a and d 
to prevail with most proteins. This is the basis for our conclusion that stress is likely 
to stabilize or induce the helical form. In passing, it should be noted that Eq. (44) 
provides the condition for locating the transition, even in the case that ~ is small, 
since it is really identical with Eq. (40). If  the stress is large enough or if y/rn exceeds 
~/n by an appreciable amount, the transition can be shifted to significantly higher 
temperatures by the application of  stress. 

5. B E H A V I O R  OF T H E  ELASTIC M O D U L U S  

In order to examine the elastic modulus, it is convenient to substitute Eq. (30) 
into (22), obtaining 

i O l n y ~  OU ( O l n y ~  OV 
(.L) = N k T  t ~ ) r  (--~-f)T -k \ ~ ] r  (--~--f)r (45) 

We may define the modulus as 

E == (O(L) /g )  -1 (46) 

Obviously, as may be seen from Eqs. (45) and (46), the modulus changes as y changes. 
If  y changes gradually, as it would in the noncooperative case, the modulus changes 
gradually. On the other hand, if a is small (cooperative case), the modulus changes 
abruptly (with the helix-coil transition) as y changes abruptly. In any event, substitu- 
tion of Eqs. (32)-(34) into Eqs. (45) and (46) allow the modulus to be computed 
for the general situation. For the cooperative case, the formula for E in the transition 
region is quite complicated and not very illuminating since it only shows the specific 
course of the abrupt transition in E. Of more interest are the values between which E 
changes. If  we examine these limits for the cooperative case, then we may use y 
prescribed alternatively by Eqs. (36) and (37) for the helix and coil, respectively. 
Substitution of these into Eqs. (45) and (46), making use of Eqs. (32) and (33), yields, 
for E in the helical case, 

mk T / ~ff. ,~ 2 (47) E - =  E h = ~ ( c o s h  k T !  

and in the coil case, 

E = E ~  cosh k T !  Os) 
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Since for most proteins we may expect 

~,2/m = 7(~/m) >~ A(A/n) = A3/n (49) 

it is apparent that the coil modulus will be significantly larger than that of the helix. 
Thus, the application of stress to a molecule initially in coil form will induce an 
abrupt transition to helix, and with it an abrupt reduction in the value of E from 
Ec to Eh. The molecule will therefore yield (the flexible helix will unfold) and avoid 
buildup of disruptive stress. Alternatively, if the molecule is originally helical, that 
state will be retained while the flexible helix unfolds, again avoiding the buildup 
of undue stress. Of course, when the helix has unfolded completely, the individual 
chemical bonds begin to accept stress and eventually fail. We have not included 
this possibility in our formal analysis. 

It may be of some interest to work out an example where the course of the 
change in modulus can be described by a simple analytic expression. This is possible 
in the noncooperative case (e = 1) when the transition is able to take place at small 
enough values o f f  so that U and V can be approximated by the following formulas: 

U = [1 -+-(Tf/kT)2] 1/m (50) 

V = [1 + (Af/kT)2] ~/~ 

in which it is assumed that, in view of the smallness o f f ,  both U and V are close 
to unity. Substituting Eq. (41) together with Eq. (50) into Eqs. (45) and (46), and 
using the fact that U and V are both close to unity at the transition (this also requires 
that s be approximately unity), we find the result for the modulus 

( k T  ) mn (51) 
E = ~ s72n + 2t2m 

Several kinds of interesting thermoelastic relations are possible. For example, 
it can be shown, by working out the complete analysis for the case where helices 
are completely inflexible (see Appendix), and where 

a/n > fi, AF  < (ln 2)In (52) 

(in which/3 is the length of amino acid in the helix), that it may be possible to apply 
stress to the molecule, initially in the coil form, cause a transition to helix, and, 
with continued increase of stress, induce coil to reappear. 

In view of the foregoing treatment, it is highly probable that the main effect 
of stress will be to either induce helix from coil or to sustain the helix, thereby 
protecting the molecule against disruptive stress. 

A P P E N D I X  

In this appendix, we present a brief treatment of the case in which helical 
sequences are completely rigid. For the one-dimensional situation, this means that, 
as we follow the chain frorr~ one end to another, helices will lie in both positive and 
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negative directions. Instead of the n's dealt with in the body of this paper, we must 
now deal with the set n~,~, nn, nT~*. Here, n~,~ has the same meaning as before, 
but nh refers to the number of rigid helical sequences containing h amino acid units 
and pointing in the positive direction, while n~* refers to helical units with h amino 
acids but pointing in the negative direction. With these definitions, we can now 
define the appropriate constant-force ensemble partition function 

~ ."% r-r zm,~ (A1) 

where, as in the body of this paper, n denotes sets of n's consistent with 

2 (n~ -4- nh*) = Z nt,~ ----- M (A2) 
h ~,g 

(where M is the common number of either kind of sequence) and 

E h(n~ + n~*) + E xnt,~ = N (A3) 

which ensures conservation of amino acids, n also refers to permutations of coils 
among coils and helices among helices. In Eq. (A1), 

Z h = f f s h e f B h / k T  ~ _  ( T S h ~  h 

zh* = ,~she -1~t~/~ = ,~sl~( -~ (A4) 

zt, x = eSaUkTq~.z = v~ql,z 

where qz,~ has the same meaning as in Eq. (7), and/3 is the length of an amino acid 
unit in a rigid helix. Note that fi is not the same as y /m ,  since now the helix is regarded 
as completely rigid. By way of contrast, ~/m was the "effective" length of freely 
orienting segment per amino acid unit. Once again, we may show the permutations 
of coils among coils and helices among helices explicitly, and write Eq. (A1) in the 
form 

A = ~ M! z,~ zt~ Mt (A5) 

Selecting the largest term in this sum, subject to the constraints Eqs. (A2) and (A3) 
yields 

n h - -  a \ y  / 

n~*- -Maa  (~y)h_ (A6) 

nt,~ = May-~vtqz,z  

Note that 

= de/kr,  v = era/kr (A7) 
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Substitution of Eq. (A6) into the typical term of Eq. (A5) yields, once again, 

In A = N In y (A8) 

so that the evaluation now of A depends upon the determination of y. Substitution 
of Eqs. (A6) into (A2) and elimination of the undetermined multiplier o~ between 
the two equations which result yields 

a ~ + = V y-~v~q -1 (A9) Z-,a l,~ 
X,1 

Substituting for q~,~ the explicit formula given in Eq. (7), and performing the sums 
(which involve only geometric series), we obtain 

y -  v ~s s/~ 
- -  4 -  ~ ( A 1 0 )  

a V  = y - -  ~s " y - -  s /~ 

This is a cubic equation whose roots are the allowable values of y. As before, we 
require the largest root (largest allowable value of y) for the stable solution having 
the lowest free energy. 

When ~ is small (of order 10-6-10 ~), excellent approximations to the three 
roots of Eq. (A10) are immediately available. These are arrived at in the following way: 
I f  y is not within the distance of order a of either ~s or s/~, neither term on the right 
side of  Eq. (AI0) can be of order l/or, a very large number. Therefore, the left side of  
Eq. (A10) cannot be of order 1~or, and this can only happen if the numerator is of 
order a, i.e., if 

y = V + O(~) (A11) 

Thus, neglecting terms of order ~r, we have for one root 

Yz = V (A12) 

On the other hand, if y does not have this value, then the left side of Eq. (A10) is a 
very large number, of order a, a condition which can only obtain when the denomi- 
nator of one of the two terms on the right is of order a, i.e., 

y = ( s  + O(cO, y = s/~ + O(cr) 

which yield the two additional approximate roots 

y2 = ~:s 

y .  = s/8 

(A13) 

(A14) 

(AI5) 

These approximations fail only within small ranges o f f  and T (which determines f,  
v, and ~:) when any two roots fall within distances a of one another. We may therefore 
adopt Eqs. (A12), (A14), and (A15), choosing the largest of Ya, Y~, and y~ in any 
range for the evaluation of in A. As we proceed from range to range, the roots "cross," 

8 2 2 / 3 [ z - 6  
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but, in fact, if we had evaluated them exactly, there would be no real crossing. Instead, 
one root would always be the largest and would smoothly transfer its behavior, 
within the apparent "crossing" range of width c~, from that of Yl to Y2, etc; if, for 
example, Y2 "crossed" to exceed yl at the crossing. As in the body of this paper, 
such crossings correspond to places where the helix-coil transition occurs. Since 
these are not singular and infinitely sharp (except when ~-+  0), it is to be expected 
that there will be a smooth but narrow range of transition. In our approximation, 
we ignore the detailed behavior within these ranges, but it can be obtained from the 
exact solution of the cubic equation (A10). Since, independently of which root is 
involved, y will always be a function of s e and v, we can, after substituting Eq. (AS) 
into Eq. (22), write 

(L)  _2t~:( ~ l n y ~  ( ~ l n y ]  
N \ ~ ] T  -+- fly \ ~ / r  (A16) 

Equation (35) still applies in the present case, and when y~ is substituted into it, 
the result is 

mn = 0 (A17) 

which indicates that, when yt is the largest root, the molecule is in the coil form. 
Alternatively, if Y2 is substituted, we find 

m H  = 1 (A18) 

so that, when this root is larger, the molecule is helical. 
Since f is positive, v > 1 and ya is always less than y~. Thus, we need only 

consider the competition between y~ and Y2 ; Y3 corresponds to situations in which 
the molecule points in the negative direction. 

Substitution of Yl and Y2 alternatively into Eq. (A16) yields, respectively, 

( L ) / N  = (A/n) t anh (h f / kT ) ,  Ya > Y2 (A19) 

(L)/N = fl ,  Y2 > Yl  (A20) 

The first of these conditions is the familiar relation between strain and stress, well 
known in the theory of gaslike, one-dimensional elastic chains. This is to be expected 
when Yl is the dominant root, since the molecule is then a rubberlike coil. Equation 
(A20) corresponds to the helical condition, and, as might be expected, the average 
length proves to be independent of stress and equal to N/3, the number of helical 
segments times the length of one of them. 

The relative behaviors of y~ and Y2 are examined most conveniently by using 
k T l n  y~ and k T l n  y2 , 

k T l n  Yl = (kT/n)  ln(eaf/kr § e -af/kr) (A21) 

k T  In Y2 = f i f  - -  A F  (A22) 

where we have used the definition of s given in Eq. (3). Four cases immediately 
distinguish themselves. The first is illustrated in Fig. 1. Here, h/n > fi and 
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- -AF > (ln 2)In. Under this circumstance, Y2 starts off (at f = 0) as the larger root. 
Thus, we begin with a molecule of helical form, but with increase of the applied 
stress, as may be seen from the plots of k T  In ny versus f i n  the figure, Yl overtakes Y2 
and the transition to the coil form takes place. 

Figure 2 shows a case identical to the first, except that )tin < ft. Here, Yl never 
overtakes Y2 and the molecule remains in the helical form regardless of how it is 
stressed. The freely orienting coil segment of length A is already considerably 
"internally" coiled. Thus, )t/n, which represents the length per amino acid in this 
segment, is probably less than [9, the corresponding length in the helix. Thus, for 
almost the same reasons involved in the treatment of the "flexible" helix, stress is 
seen to stabilize the helical form relative to coil. 

Figures 3 and 4 illustrate cases in which - -AF  < On 2)In. In Figure 3, A/n > 8, 
and there is no transition. The molecule starts out as a coil and stays that way. 
By the argument advanced above, however, we would expect Fig. 4 to represent the 
more typical situation. In this case, the molecule begins as a coil but undergoes a 
transition to helix upon the application of stress. Thus, we arrive at the same general 
conclusions for the case of the inflexible as the flexible helix. 

There is an interesting modification of Fig. 3 which we present in Fig. 5. This is 
the case in which - -AF < (ln 2)In, A/n > fl, but where - -AF  is only slightly less 
than (ln 2)/n. Here, it is possible for the curve belonging to Y2 to cross that of Yl in 
two places in the manner shown in the figure. In the approximation that f is small 

i 

kT~ny I 

kT2ny / 

I (#n2)/n / f 

-AF 1 ~ Z ~  

X > , 8  - A F  < 2n2  
r) ., 13 

Fig. 3 
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,~n2 
r l  
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at the locations of  both  crossings, the two values o f f  at these locations are approxi- 
mately, respectively, 

n~kT [[ n~kT ] ~ 2kTn k T l n 2  + 
f =  ~ + L ~, X~ l ~2 ( ~  AF)] '/~ (A23) 

I t  is obvious that, for the value o f f  given by this equation to be real, 

m~akT [ k T ~ n  2 AF] (A24) 
12 > 2 - - ~- 

which therefore represents a condition which must be satisfied in order that the 
double crossing be possible. 

When such a double crossing occurs, the molecule is initially in the coil form, 
makes a transition to helix at the first crossing, and makes a second transition back 
to coil at the second crossing. 
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